
ReportBuilder
 Server Edition

Developer’sGuide

 Second Edition

Server Edition
Developer's Guide

Copyright © 2002 - 2007 by Digital Metaphors Corporation

i

CONTENTS

SERVER FUNDAMENTALS

Report Application vs. Report Server Application ..3
Socket To Me ...5
Building a Report Server Application ...7
Talking To The Server From A Thin Client ..9
Registering Reports With The Server ..11
Spelunking With The Report Explorer ...15
Publishing Reports to the Web ..17
Making Web Browser Content Printable With PDF ...19
Troubleshooting the WebTier ..21
FAQ ...23

TUTORIALS

Building a Report Server Application for Reports on Forms

Overview ..29
Copy Existing Report Application to a New Directory29
Convert the Application to a Server ...30
Register the Reports On the Server ..30
Make the Data Access Components Thread-Safe ..30
Run the Server Application ..31
Create a Thin-Client Application ..31

Building a Report Server Application for Reports in Files

Overview ..33
Copy Existing Report Application to a New Directory33
Create a Thread-Safe Data Module ...34
Register the File-Based Reports ..34
Move the Report Event Handlers to the Data Module34
Convert the Application to a Server ...35
Run the Server Application ..35
Create a Thin-Client Application ..36

Building a Report Server Application for Reports in a Database

Overview ..37
Copy Existing Report Application to a New Directory37
Update the Path of the Database Component ...37
Create a Thread-Safe Data Module ...38
Register the Databased Reports ...38
Move the Report Event Handlers to the Data Module38
Convert the Application to a Server ...39
Run the Server Application ..39
Create a Thin-Client Application ..40

ii
Building a Report Server Application for an Explorer Database

Overview ..41
Copy Existing Report Application to a New Directory41
Create a Thread-Safe Data Module ...42
Register the Databased Reports ...42
Convert the Application to a Server ...43
Run the Server Application ..43
Create a Thin-Client Application ..43

Building a Report Server Application for Report Archives

Overview ..45
Copy Existing Report Application to a New Directory45
Register the Report Archives ...46
Convert the Application to a Server ...46
Run the Server Application ..46
Create a Thin-Client Application ..47

Run a Report Server Application from a Windows Service

Overview ..49
Install the Windows Service ...49
Create a Service Compatible Report Server Application50
Update the File Directory of the Report Volume ..50
Designate the Report Server Application from the Windows Service50
Run the Thin-Client Application ...50

Publish Reports to the Web

Overview ..53
Create a Directory for the Web Tier ...53
Create a Virtual Directory on IIS ..54
Create an ISAPI DLL ...54
Add a Default Action to the ..55
WebModule ..55

Scaling the Web Tier with a Server Farm

Overview ..57
Create a Report Server Application ...57
Copy the Report Server Application to a Network Folder57
Deploy the Report Server Application ..58
Check Each Server via Thin Client ..58
Configure a Web Tier Using Round Robin ..59
Test via Web Browser ..59
Configure a Web Tier Using Minimum Load ..60

SERVER FUNDAMENTALS

Report Application vs. Report Server Application 3

Socket To Me 5

Building A Report Server Application 7

Talking To The Server From A Thin Client 9

Registering Reports With The Server 11

Spelunking With The Report Explorer 15

Publishing Reports To The Web 17

Making Web Browser Content Printable With PDF 19

Troubleshooting the WebTier 21

FAQ 23

3Report Application vs. Report Server Application

SERVER FUNDAMENTALS
Report Application vs. Report Server Application
ReportBuilder Server Edition makes it easy to cre-
ate a report server application. A report server
application is quite different from a standard Del-
phi report application. The key differences are:

1 The server application must be able to commu-
nicate across the network in order to satisfy the
requests of client applications. In a traditional
application, objects may pass freely through the
system, with “communication” taking the form of
method calls. In a server application, objects or
data must be converted to a network compatible
format, sent across the network to the client and
then converted back to objects or data by the client.

2 The server application must be able to run each
report within the context of a thread. This means
that the data access components and the report
components must be thread-safe: that is, multiple
instances of these objects must be able to co-exist
and run “side-by-side”, without any conflicts
created by the use of shared resources. This is not a
requirement for a standard reporting application,
which usually generates reports one at a time.

The diagram below depicts a typical report applica-
tion. When the Preview Form is displayed, the first
page of the report is requested by the Screen
Device via a call to the RequestPage method. The
report object checks a cache for the requested page,
and if the page cannot be found, passes the request
along to the report engine. The report engine
attempts to generate the requested page, and then
triggers an OnSendPage event, which returns the
page to the report. The report then calls the
ReceivePage method of the Screen Device, causing
the page to be displayed. Notice that all of the
objects exist in the same memory space: method
calls and events are used to pass information from
object to object.

4 Report Application vs. Report Server Application

SERVER FUNDAMENTALS
In ReportBuilder Server Edition, this application is
divided into two parts: client and server. The server
portion of the application will contain the data
access components and the reports. The client por-
tion of the application will contain the Preview
Form and any devices necessary to process the
pages.

Obviously the complexity of this reporting solution
is much greater than the complexity of the standard
application; two applications must communicate in
order for this solution to function effectively.

Any objects which were passed freely between
these two areas in the standard reporting applica-
tion will now be passed across the network.

The Server Edition makes this conversation happen
via a technology known as sockets (depicted in the
diagram below); a topic we discuss briefly in the
next section.

5Socket To Me

SERVER FUNDAMENTALS
Socket To Me
In the Server Edition communication between the
server and client application occurs via sockets. A
low level feature of the Windows operating sys-
tem, sockets were invented by the team which
modified Unix in order to create the early internet.
To function properly, sockets require a machine
address (IP address like 192.168.1.120) and a port
(number between 1 – 65535.) Given these values,
two-way communication can be established
between applications.

When creating a report server application, the Port
property of the rsServer component is used to
establish the port to which the application will “lis-
ten” when communicating with clients. Of course,
you should avoid port numbers which conflict with
other applications that may be running on the
server machine.

Ports for typical services appear in the table below.

The machine address (IP address) is not set on the
server component, because the address used for the
socket is always the address of the machine on
which the server application is running.

The client application is in a rather different situa-
tion. It must specify both the machine address and
the port for the server to which it will connect.
These values are set on the ServerConnection prop-
erty of the rsClientReport component. The
machine address can either be a set of four num-
bers, or a valid DNS name (i.e. www.mycom-
pany.com) Armed with these two values, the client
application can initiate a conversation with the
server.

The nature of this conversation is as follows:

Sockets give us an excellent pipeline for bytes –
but objects are hardly bytes. Before we can send an
object over the wire, we must convert it to a
stream. This is done using a customized version of
Delphi streaming. Once an object has been con-
verted to a stream, it is compressed, converted to
alphanumeric characters (Base64), wrapped in the
body of a SOAP message and sent, piece-by-piece
through the socket to the client. The client reas-
sembles the stream, extracts the element from the
SOAP message and then uses the same customized
Delphi streaming logic to instantiate an exact rep-
lica of the original object. When the client needs to
send a message to the server, the same sequence
occurs in the opposite direction.

ftp 21
telnet 23
smtp 25
http 80
pop3 110
nntp 119

http://www.mycompany.com
http://www.mycompany.com

7Building a Report Server Application

SERVER FUNDAMENTALS
Building a Report Server Application
Our basic goal is to create a Delphi application that
will respond from the host machine on a certain
port. Any application which wishes to talk to the
report server, must know the IP address of the
server machine and the port of the server applica-
tion. Armed with these two pieces of information, a
client can begin a conversation with the server.

In the Server Edition, we specify the port in the
Server component. This non-visual component
serves as the heart of the application. The most
important setting is the Port property, and we will
accept the default value: 1333. This value was
chosen as the default because it does not conflict
with any of the port values used by common oper-
ating system software.

The screen shot below shows a TrsServer compo-
nent on a Delphi form. In order to get the server
running, we have added a “Power” button to the
form. When we run the application and click the
button, the following code fires:

rsServer1.Active := spbPower.Down;

Once the server is active, it will begin listening for
requests. At this point the server does not have
access to any reports and so can’t do much except
respond with “I got nuthin’.”

Actually the server will respond with something a
little more concise than that, it will say: “No vol-
umes exist.” In the context of the Server Edition, a
volume is a collection of reports in the Report Cat-
alog. Volumes are the natural consequence of reg-
istering reports with the server – they are
ReportBuilder’s way of attaching a name and an
access mechanism to a group of reports.

So let’s create a volume. Assume we’ve got a
report component on a Delphi form. All of the data
access components for the report are on the form as
well. We add this form to our Report Server
project, open it and place the following code at the
bottom of the unit:

initialization
 TrsReportCatalog.RegisterReport(‘Accounting’,
 ‘By Quarter’,

‘rptByQuarter’,
 frmByQuarter);

end;

The first parameter is the volume name, the second
is the report alias (the name the user will see from
the client), the third is the name of the actual report
component (i.e. the value of the TCompo-
nent.Name property) and the fourth is the name of
the form. When the application runs, this initializa-
tion section will register the report with the server.

Now, we’ve almost got enough here to serve this
report, but we need two more things. This form is
perfectly good for running a report in a Delphi
application. But in the context of the server, this
form will actually be running within a thread. The
BDE-based data access components on our form
will not like this; they will blow unless we add a
TDatabase object – specifying where the database
is located and a TSession object.

8 Building a Report Server Application

SERVER FUNDAMENTALS
The AutoSessionName property of the session
must be set to True, so that when this form is
instantiated, the session will be uniquely named
within the context of the entire application. With
these two details out of the way, we are now ready
to serve the report. We run the application and
click the “Power” button. Great, now, how do we
tell if the server is actually working? The answer:
create a thin-client application.

9Talking To The Server From A Thin Client

SERVER FUNDAMENTALS
Talking To The Server From A Thin Client
The easiest way to verify that our server is actually
serving this report is to create a thin-client applica-
tion. To do that, we’ll need to create a new applica-
tion and add a TrsClientReport component to it.
The ClientReport component allows us to work
with a given report as if it were actually inside the
client application. We can use it to “load” reports –
though this process is slightly different from the
LoadFromFile or LoadFromDatabase techniques
you are used to, and we can use it to preview
reports as well. The ClientReport component has a
lot of network communication stuff crammed
inside of it - but we can mostly ignore that and get
our app working by configuring the ServerConnec-
tion and then setting the VolumeName and Report-
Name properties at run-time.

If we expand the ServerConnection property in the
Object Inspector, we can see several properties
embedded within it. Address refers to the location
of the server: the IP address. Since we are running
the server application on the same machine as the
client, the default (localhost) will do nicely.

Password we can ignore, since we have not imple-
mented a security scheme on the server. Port has
defaulted to the correct value: 1333 and Timeout is
set to 60 seconds. Timeout refers to the amount of
time the client will wait for a server response
before giving up on the request and displaying an
error message.

The next thing we need to add is a button. To dis-
play the report in the OnClick event, we’ll code
this:

rsClientReport.VolumeName := ‘Accounting’;
rsClientReport.ReportName := ‘By Quarter’;
rsClientReport.Print;

We know this report exists on the server and so we
just hard-code the values. When the Print method
is called, the ClientReport component will commu-
nicate with the server, asking for the first page of
the report named “By Quarter” in the “Account-
ing” volume. Using the information we supplied in
the RegisterReport call, the server will instantiate
an instance of our report form and run the report.

Once the first page is generated, the report server
will send it across the wire to ClientReport, where
it will then be displayed in the standard Print Pre-
view form. There is, of course, a lot going on
behind the scenes to make all of this possible, but
that is the gist of it.

So, we’ve got a form based report running across
the wire. That’s great and all, but it’s also pretty
limited. We don’t want to be recompiling and re-
deploying our server application every time we
want to add or change a report. Realistically we
need to consider other report configurations:
reports located in template files, reports saved in
end-user database tables and reports in archive
files. How do we serve these types of reports?

11Registering Reports With The Server

SERVER FUNDAMENTALS
Registering Reports With The Server
Registering Report Templates
If you’ve ever worked with report template files,
then you probably know that there are some impor-
tant caveats to consider, the first and foremost of
which is: where are the data access components
going to reside? Without data access components
most reports will not run. Second, where are the
event handlers going to reside? Delphi event han-
dlers exist within the executable, and any template
which uses them must be loaded in a way that
allows the events to successfully reconnect. Each
of these issues has two basic resolutions:

1 When creating the report, use the Data tab
(DADE) and the Calc tab (RAP) to configure the
data access components and create the event han-
dlers.

With this approach the data access components and
the event handlers are saved in the report, provid-
ing maximum portability. However, even this con-
figuration requires a database connection and RAP
pass-thru function availability.

2 When creating the report, use standard Delphi
data access components and Object Pascal event
handlers.

Here the entire supporting cast is stored in a Delphi
form or data module, with the report connected to
them. In order to successfully load such a template,
we must make sure that the Delphi form or data
module is the owner of the report component used
for the loading process (or at least the data module
is instantiated and “used by” the form or data mod-
ule containing the report.)

You can certainly view these two alternatives from
the perspective of portability, where the first is the
maximum portability and the second is the mini-
mum (actually form-based reports should probably
be considered the minimum, since they are
“locked” into the executable.) Either way, the
report server needs to successfully load the tem-
plate and run the report. To make sure that hap-
pens, we need to use a ReportTemplateVolume
component, which let’s us specify an operating
system directory where template files reside. And
we need to place that volume in a Delphi form or
data module which provides a complete, functional
“habitat” in which the report can generate. If you
have a functioning report application, then you
already have such a habitat somewhere in your app
– but it usually makes sense to break this out as a
separate data module, so that the server does not
have to include your entire application. Let’s create
a typical habitat for set of highly portable (i.e.
DADE and RAP based) report templates.

The first thing we do is open the Server application
and add a new data module to it. Make sure the
data module is auto-created. We create a Report-
TemplateVolume component and set the FileDirec-
tory property to the location of our templates. At
this point we can run the server and any templates
which appear in the directory will be accessible
from the client app. The problem is, they will not
run, because we have not provided a database con-
nection. Assuming the reports are BDE based, we
add a TDatabase component and TSession compo-
nent to the form. We set the AutoSessionName
property of the TSession to True, so the session
name will remain unique, even in a multi-threaded
environment.

12 Registering Reports With The Server

SERVER FUNDAMENTALS
Next we add the name of the unit containing the
DADE plug-in used for these reports to the uses
clause of our data module (in this case,
daDBBDE.) We compile the Report Server appli-
cation and run. The reports should now function
properly from the client.

That is, unless some of them call RAP pass-thru
functions. If this is the case, we need to add the unit
containing the pass-thru functions to our applica-
tion. If the functions are registered in the initializa-
tion section of their unit (which is usually the case)
then we are done. Recompile and run.

You’ll notice that registering reports is more about
creating a habitat conducive to report generation,
than it is about understanding the ins and outs of
the volume components. The volume components
are actually quite simple, representing little more
than a location (and the associated access mecha-
nism) for a given set of reports. No volume illus-
trates this more clearly than the
ReportArchiveVolume.

Registering Report Archives
Report Archives are reports which have been gen-
erated and saved to a file or to a database BLOB
field. Because the generation cycle is complete, no
database objects are needed when previewing the
reports. This greatly simplifies the task of serving
report archives. Assuming we have a system direc-
tory stocked with report archive files, we can regis-
ter these by creating a new data module in the
Server Application, adding a ReportArchiveVol-
ume and setting the FileDirectory property. Once
we compile and run these reports will be available
from the client app. Also, any archive files we add
to this directory will appear on the client the next
time the client takes a fresh look at the given vol-
ume. In other words the directory is now “hot”,
and anything we add to it will be served to clients.

As you can see, there is not much to serving report
archives, it’s by far the easiest way to get a server
up and running. Archives are the best way to serve
reports when lots of users want to access the same
report and interactive search criteria (where the
user enters the search criteria) are not needed.

 Registering End-User Reports
The end-user solution provided by ReportBuilder
organizes reports in a folder tree structure. This
structure is stored in two database tables: a folder
table and an item table. Almost all items are reports
(though some may be exported data modules or
code modules.) The trick, of course, is how to
serve this more complex structure. It’s not simply a
directory with templates or archives in it. This
problem is so fundamental, that the concept of
folders became “the way” to model all volumes.
Both the TemplateVolume and ArchiveVolume
can handle subfolders, and automatically display
subfolders when they are configured. The end-user
folder structure can be served via the ReportEx-
plorerVolume. The name refers to the Report
Explorer, which normally displays the folders and
items in an end-user application. The same config-
uration conditions apply to end-user reports as to
any template based reports: a database connection
is needed, any RAP pass-thru functions which have
been used in the reports are needed, and the unit
name for the DADE plug-in must be included in
the uses clause. So let’s configure a
ReportExplorerVolume and see just how easy (or
difficult) it is.

First, we open the Server Application and add a
new data module to the project. We place a
ReportExplorerVolume in it. Then we open the
main form containing our end-user solution. From
this we copy the data access components for the
folder and item tables.

13Registering Reports With The Server

SERVER FUNDAMENTALS
We paste these into the data module. Next we add
database connection objects: for this example we
need a TDatabase and a TSession object. We set
the TSession.AutoSessionName property to True
so that it is thread-safe. We add the unit name for
the DADE plug-in to the uses clause (in this case
daDBBDE) and that’s it. We’re ready to go. The
steps necessary to configure the database connec-
tion for any given database (and database connec-
tivity product) will vary. See the examples in
RBServer\Demos\Explorer Databases for an exam-
ple of your database/data connectivity product.

15Spelunking With The Report Explorer

SERVER FUNDAMENTALS
Spelunking With The Report Explorer
We have created quite a collection of reports on the
server with all of this registration activity. We have
a report on a form, a set of reports in an operating
system directory, a set of report archives in an
operating system directory and a set of reports in
an end-user database. While the report catalog and
volume naming scheme ensures that we do not
have a report name collision on the server, things
are about as clear as mud on the client side. There
are far too many reports to use the simplistic hard-
coding technique we used earlier. Further, giving a
simple report name will not be sufficient for the
end-user reports – we need a way to specify folder
names too. Fortunately, there is a component
which will give us a nice “bird’s eye view” of all
reports on the server, without forcing us to hard-
code anything: the ClientReportExplorer.

Let’s modify the thin-client application we created
earlier by adding a ClientReportExplorer compo-
nent to it. This component does not contain a Serv-
erConnection object, but instead relies on a
ClientReport to do its connecting. That means we
simply assign the ClientReport property and away
we go. The ClientReportExplorer works much like
a Delphi System Dialog component; you call the
Execute method and a dialog is displayed. Let’s
code a Launch button:

rsClientReportExplorer1.Execute;

The screen-shot below shows what happens when
we run this application and click the Launch but-
ton. It’s the same old Report Explorer from the
end-user application, only this explorer is running
across the wire, and is displaying reports from a lot
more sources than just the end-user database
tables.

A full-blown Report Explorer may be more than
you really need. If this is the case then rest assured
that the classes used by the Report Explorer to
query the server, discover volumes, folders and
reports are fully available to you. If you need to
implement a custom UI in your thin client app,
check out the TrsClientReportCatalog class for an
easy way to get started.

17Publishing Reports to the Web

SERVER FUNDAMENTALS
Publishing Reports to the Web
The Server Edition has a special component, called
the WebTier, which converts the information pro-
vided by the server into an HTML/JavaScript
application. Let’s configure a web tier and get a
feel for how it works. We’ll assume that our web
tier will reside on a PC running IIS, and that we
will deploy the web application as an ISAPI DLL.

First we create a new Web Server application from
within Delphi. To do this, select File | New |
Other... and then select Web Server Application.
This will create a WebModule, which is a special
kind of data module that knows how to talk to an
IIS web server. In the web module we place a
WebTier component.

Assuming the web server is running on the same
machine as the report server application, we set the
following three property values:

CacheDirectory C:\myWebTier\Cache\
ServerConnection {use the default values}
WebCachePath http://localhost/myWebTier/Cache/
WebModuleURI http://localhost/myWebTier/myWebTier.dll

The CacheDirectory names the system directory
where the WebTier will store the output generated
for a given session (folder/tree structures, page
object files, and images.)

The WebCachePath is the URI to the cache direc-
tory. We will create a virtual directory on the
server which maps to the CacheDirectory on the
PC. The virtual directory describes a path which
will be accessible from a web browser (i.e. you can
type it as an address in a web browser and the
server will return the content of the directory.)

The WebModuleURI is an HTTP address which
describes the exact location of the web tier on the
server. This is the address you type into the
browser to invoke the web tier.

Next we need to process the requests received from
web browsers. To do this, we need to hook the
Web Module to the Web Tier:

1 Right-click over the Web Module and select
“Action Editor.”

2 Add an action to the list.

3 Use the Object Inspector set the Default prop-
erty of the Action to True.

4 Code the OnAction event of the Action as:

Response.Content := rsWebTier1.ProcessWebRequest(
Request.QueryFields,
Request.Content);

The web tier handles all possible requests through
the method: ProcessWebRequest, and so we pass
http requests straight through to the web tier, which
in turn provides the appropriate response. For more
on Web Modules and Actions, see the Delphi help.

We can now compile myWebTier and copy the
resulting DLL to C:\myWebTier. That’s all there is
to it!

18 Publishing Reports to the Web

SERVER FUNDAMENTALS
We may be done generating the DLL, but IIS isn’t
yet configured to use it. We need to create a virtual
directory, so that IIS can make our new DLL avail-
able from a web browser. To do this:

1 Select Start | Control Panel and double-click
Administrative Tools.

2 Double-click Internet Information Services (if
you can’t find this icon, you probably do not have
IIS installed. Double-click Add/Remove Programs
and then click Add/Remove Windows Components
– from there you can install IIS.)

3 Expand the “Local Computer” entry and find
the Default Web Site entry under Web Sites.

4 Right-click over Default Web Site and select
New | Virtual Directory. The Virtual Directory
Creation Wizard will be displayed.

5 Enter an alias of “myWebTier.”

6 Click Finish, find the new virtual directory and
select it.

7 Right-click over the virtual directory and select
Properties.

8 Locate the Application Settings section at the
bottom of the first tab.

9 Set Application Protection to High (Isolated)
(This will keep the web tier from crashing the web
server and other ISAPI DLLs from crashing the
web tier.)

10 Click OK to exit the dialog.

11 Close the Internet Information Services and
Administrative Tools windows.

We’re now ready to test the web tier! Launch your
web browser and enter the following address:

http://localhost/myWebTier/myWebTier.dll

If we’ve configured everything properly, you
should see the HTML version of the report
explorer in your web browser. Click on a report
and the HTML version of the report viewer should
be displayed.

19Making Web Browser Content Printable With PDF

SERVER FUNDAMENTALS
Making Web Browser Content Printable With PDF
If you’re previewing a report in the browser, how
do you print it? Well, we can certainly right-click
over the frame which contains the page, select
Print and we will get “something.” But honestly,
HTML just doesn’t print very well. To get the
high-quality output we normally expect from
ReportBuilder, we’ll need to harness yet another
“web technology,” PDF and the Acrobat Reader.

ReportBuilder Server Edition includes web adap-
ater classes that enable the WebTier to use Report-
Builder's built-in PDF device as well as third-party
add-ons available from Gnostice, Pragnaan, and
Waler. (Note that the third-party web adapters
require that you have the relevant product
installed.)

To add PDF support to your web application, add
the appropriate unit reference to the uses clause of
your web module

After you have done this, recompile the project and
copy the resulting web tier DLL to the virtual
directory. Test the new DLL from your web
browser. You should now see a printer icon on the
far left of the report viewer. Clicking on this icon
launches a separate browser window with the
entire report in PDF format (of course the Adobe
Acrobat Reader plug-in must be installed in order
to view the report.)

PDF Device Web Adapter Unit

ReportBuilder rsWebAdapaterPDF

Gnostice rsWebAdapaterPDFGnostice

Pragnaan rsWebAdapaterPDFPragnaan

Waler rsWebAdapaterPDFWaler

21Troubleshooting the WebTier

SERVER FUNDAMENTALS
Troubleshooting the WebTier
I receive the message “Unable to connect to
server.”
Either the server was not started successfully or the
server has crashed. In the latter case, if the server is
not being deployed as a Windows service it will
have to be manually restarted.

I receive the compile error “Could not create
output file C:\Inetpub\wwwroot\rbbin\
Report.dll” when trying to build the web tier
project.
Most likely the Report.dll has been loaded by IIS.
Access the IIS manager, right click on the virtual
directory where Report.dll resides, select Proper-
ties and click Unload. If that fails, restart the web
server.

I have LogSettings.EnableLogging set to true on
the web tier but the log file is not being gener-
ated.
Make sure that the user account which is being
used to execute the web tier has permission to write
to the directory specified by LogSettings.Location.
The default user account used by IIS is
IWAM_Machinename.

When I try to bring up the report explorer the
browser cannot load the frames.
There are a few reasons this could be happening.
First, check that the WebCachePath property on
the web tier has been set correctly (should have
machine IP address instead of “localhost”.) Sec-
ond, check if the desired path is set up correctly in
the web server. Third, make sure that the cache
directory is set up for web access. This is usually
done by adding the “Internet Guest Account
(IUSR_MachineName)” account to the access list
for the cache directory.

Where’s my print button?
To use ReportBuilder's built-in PDF support, add
rsWebAdapterPDF to the uses clause of the web
module. To use a PDF add-on product from Gnos-
tice, Pragnaan, or Waler, first install the add-on
product and then add rsWebAdapterPDFGnostice,
rsWebAdapterPDFPragnaan, or rsWebAdapterPD-
FWaler to the uses clause of the web module.

I have to wait a really long time to see my
report.
There are a number of reasons this could be hap-
pening. The first and foremost is that the requested
report is very complex. That is it either has a query
that takes a long time to execute or the report has
numerous calculations and takes a long time to pro-
cess. There are numerous ways to improve the exe-
cution of the report itself which will not be
discussed in this article. There are, however, a
number of options which you could control on the
web tier to help improve performance. Setting the
viewer to incremental mode (ViewerSettings.Incre-
mental Mode) and setting garbage collection to run
in a separate thread (GargabeCollection.Sepa-
rateThread) could potentially reduce the latency
time for receiving the first page of the report.

22 Troubleshooting the WebTier

SERVER FUNDAMENTALS
The text in the outline is all garbled.
This is simply due to how your browser wraps text.
Resizing the outline frame should fix the problem.

When I execute a new report, some of my old
reports are wiped from the cache.
The web tier has a setting which determines the
maximum number of reports which could be
present in the cache simultaneously per session
(SessionOptions.MaxReportCount). When the
specified number of reports in the cache has been
reached, the next incoming request from the same
session will cause the least recently viewed report
be wiped from cache.

After having run a report once my data has
changed, but when I return to my report from
the report explorer I see the same old report.
How can I see the new data?
The web tier caches report data to avoid having to
rerun the report and give you better performance.
To force a report to be regenerated click the
Refresh button on the navigation toolbar.

I receive a message telling me that logging has
been disabled. What does this mean?
This is a non-critical error which means that log-
ging has been enabled on the web tier but the web
tier was not able to successfully log its activity in
the specified location. You can continue working
normally but the error will recur every time the
web tier is reloaded. The most likely cause of this
problem is that the directory specified for the web
log either does not exist or the web tier does not
have permission to write to it.

In the WebTier Cache directory, none of the
sessions are ever deleted.
Session folders should be deleted when the session
timeout (WebTier.SessionOptions.SessionTime-
out) is exceeded (i.e. no activity for the session has
occurred in the last five minutes.) However, the
WebTier.dll must have read/write access to the
cache directory. The WebTier.dll runs under the
account IWAM_<MachineName>. Right-click
over the cache directory, access Properties... and
click the Security tab. Select IWAM_<Machine-
User> and give this user Full Control.

23FAQ

SERVER FUNDAMENTALS
FAQ
Do I have to change all of my reports to get
them to work on the server?
No. But you do have to provide thread-safe con-
tainers for the database connection components
needed by your reports. That may sound scary, but
it’s really no big deal.
The documentation for the Server Edition will
include directions for creating thread-safe contain-
ers for all of the popular database/connectivity
product combinations. These containers can be
Delphi data modules or invisible forms and should
be configured with the appropriate Volume compo-
nents or direct registration calls. Through the regis-
tration process you associate containers with
reports so that the reports can successfully connect
to a database when loaded. Report related event-
handler code must also be thread-safe. However,
unless you are referencing global objects or
resources that exist outside the context of the con-
tainer form or datamodule, then the code is proba-
bly thread-safe as is.

How hard is it to get the server up and running?
It is very easy. The Server component encapsulates
all of the functionality required to communicate
with clients and execute reports on their behalf.
Your primary task will be registering your reports
with the server’s report catalog. If the reports are
deployed as components on Delphi forms or in data
modules, this requires a simple registration call to
the report catalog. If the reports are deployed as
report templates, as report archives, or as report
templates in the end-user database structure it is
even simpler. You can connect one of the Volume
components to the file directory structure or the
database tables and it will dynamically generate
catalog items for all of the reports residing in the
structure. Using this latter scheme you can add and
remove reports without bringing the server down.

How many users can practically be served at
once?
It depends. A report based on a simple query,
which retrieves few records and generates few
pages can be run by many users at once. A report
which utilizes multiple complex queries, pulls mil-
lions of records and generates tens of thousands of
pages may be all the server can handle at any one
time. The best way to determine the answer to this
question is to create a report server with your
reports and see how it goes. You have lots of
options regarding live report vs. archive report, full
generation vs. incremental generation and caching
configuration options on both the report server and
the web tier. There is also multiple CPU and multi-
ple server configurations to consider.

How fast is the server?
Just as fast as ReportBuilder, but certainly no
faster. Remember that directory structures (folder
trees), search criteria, and page objects must be
sent across the wire to the client. This takes addi-
tional time. Yes, the messages are compressed.
Yes, multi-threading means that the messages will
be processed in a timely fashion. But there are
many, many factors which control the performance
any given user may experience. The best bet is to
test the server using your reports and your client
application.

How do I stop a “runaway report” on the
server?
The Volume.PublishingOptions can be used to
specify the maximum number of pages and maxi-
mum number of seconds for report execution.
These values can be used as the defaults for all
reports in the volume. The Volume.OnGetPublish-
ingOptions event can be used to dynamically set
the publishing options for individual reports.

24 FAQ

SERVER FUNDAMENTALS
Proper use of the Volume.PublishingOptions
should prevent runaway reports. However, in the
event of a runaway report, you will need to stop the
service or (if you are running the server in stand-
alone mode) shut down the server application. A
future version of the Server Edition may contain an
administrative application where you can stop indi-
vidual sessions – but for now we are focused on
solidifying a fast, stable and scalable core.

What happens if the server crashes?
When configured correctly, the server will simply
clean up after itself and automatically restart. This
is why you should deploy your server application
using the Windows Service scheme. Under this
scheme if the server crashes, the Windows Service
can automatically restart the application. The
server application is running in its own process
space – which means that other applications on the
same machine should not be affected if the server
crashes. For reasons of both performance and sta-
bility, you should also run your web tier as an Iso-
lated Process. This keeps other ISAPI DLLs on
your web server from crashing your web tier and
vice versa. Of course, when a crash does occur, the
exception will be logged – so you should be able to
isolate the report causing the problem.

Does the server do any kind of logging?
Yes. Both the report server application and the web
tier will automatically log any exceptions (unless
logging is turned off.) The web tier also has a “ver-
bose” mode where it logs every request, every
response, every run of the garbage collector and
every exception. By default this verbose mode is
turned off, because logging adversely affects per-
formance. The log format can be set to ASCII text
or XML.

Can I hot-swap reports running on the server?
Yes. The Report Server can dynamically discover
the existence of new folders, reports, and archives.
Thus you can add or replace reports and archives
that are stored in files or a database. Of course
changing reports which are compiled directly into
the server application requires that the server be
stopped and replaced with a new executable con-
taining the new reports. That is why the Templat-
eVolume, ArchiveVolume, and ExplorerVolume
components are preferred - they specify a location
where reports are stored.

Can I administer the server remotely?
Yes, using Windows remote desktop or a product
such as PCAnyWhere, you can run the RB Ser-
vices Manager. The RB Services Manager is avail-
able from the Start Menu, under ReportBuilder |
Services Manager. It is a system tray based appli-
cation which allows you to start/stop the report
server or change the location of the server app (if
you need to move the app to a different directory.)
The RB Services Manager is available only when
the server is deployed as a Windows Service.

25FAQ

SERVER FUNDAMENTALS
How is printing handled from the web browser?
The Web Report Previewer includes a Print button
on the toolbar. Pressing the Print button generates a
PDF that is opened on the user's machine by Adobe
Acrobat Reader.

Does the server support https?
Yes. Not only can you secure the web tier so that it
is only accessible via https, you can configure RB
thin-client components so that they talk to the web
tier instead of the report server, making thin-client
communications secure.

Does the server provide encryption?
The first version of the server does not include
encryption. One solution is to use HTTPS to com-
municate between clients and the WebTier. Then
deploy the Server and the WebTier on the same
machine or perhaps run the Server application on a
separate machine behind your firewall.

Can I provide a login and user name before
users get access to the reports?
Yes, an example is installed with RB Server Edi-
tion. The example also shows how to allow differ-
ent users to see different sets of reports based upon
login credentials.

Can Server run on Linux?
No. While the report engine inside the server appli-
cation is functioning without a user-interface,
many dependencies on the Windows Operating
System (and the associated API) still exist. We
consider a Linux server to be a mammoth under-
taking and are not committing to such a project at
this time.

Can I use the Server Edition to build ISAPI,
CGI, ASP, and Apache applications?

The Server Edition leverages Delphi’s ability to
build several types of web applications. The WebT-
ier component can be included in a Delphi Web-
Broker application, WebSnap application, or
Active Server Object. The Server Edition includes
examples of using each of these technologies to
build web applications.

Can I use the Server Edition with WebBroker,
WebSnap, or IntraWeb?
Yes. We have examples of using the WebTier with
WebBroker, ASP, and ASP.NET. We do not cur-
rently have an example of using IntraWeb, how-
ever, the WebTier can be included in any web
application as long you forward the web report
request to the WebTier by calling its ProcessRe-
quest method. The WebTier can handle the rest.

26 FAQ

SERVER FUNDAMENTALS
Is the Server Edition royalty-free?
No. The Server Edition provides deployment
licenses which allow you to run a server applica-
tion on a single CPU. If you decide to run the
application on a machine with multiple CPUs then
you will need to purchase one deployment license
for each CPU. The Server Edition includes one
server development license and one server deploy-
ment license. Each deployment license is “unlim-
ited-user,” you can run as many users against any
given server as you like.

Do I need to buy both the Server Edition and
the Enterprise Edition?
No. The Server Edition includes the Enterprise
Edition, so you’ll have all of the tools you need to
both create reports and deploy them to the web.

How much does it cost?
The Server Edition is US $999 - and that includes
everything in the Enterprise Edition, the Server
Edition components, one server development
license, and one server deployment license. The
Enterprise Edition already costs $749 – so you are
basically getting all of the Server Edition technol-
ogy for $250. Considering that additional deploy-
ment licenses are only $249, and that each license
allows you to run unlimited users against the
server, it’s probably the most cost effective solu-
tion out there.

TUTORIALS

Building a Report Server Application for Reports on Forms 29

Building a Report Server Application for Reports in Files 33

Building a Report Server Application for Reports in a Database 37

Building a Report Server Application for an Explorer Database 41

Building a Report Server Application for Report Archives 45

Run a Report Server Application from a Windows Service 49

Publish Reports to the Web 53

Scaling the Web Tier with a Server Farm 57

29Building a Report Server Application for Reports on Forms
TUTORIALS
Building a Report Server Application for Reports on Forms

Overview
This tutorial will show you how to:

• Configure Form-based reports for use in a Report
Server Application

• Preview Reports from a Thin-Client Application

Copy Existing Report Application to a
 New Directory
1 From the Windows desktop, launch the Win-
dows Explorer.

2 Create the directory:

C:\My RB Tutorials\01. Form-Based Report
Server

3 Copy all of the files in:

…RBServer\Tutorials\Server Projects
\01. Form-Based Report Application

 to the new directory.

4 Select File | Open Project from the Delphi
menu, locate the project in the new directory and
open it.

5 Select File | Save Project As from the Delphi
menu and save the project under the name
“rbServer.”

6 Run the project. You should see a single menu
item named “Reports.” Under this menu there
should be five reports listed. You should be able to
preview any of these reports.

7 Close the application and return to the Delphi
IDE.

30 Building a Report Server Application for Reports on Forms

TUTORIALS
Convert the Application to a Server
1 Select View | Project Manager from the Delphi
menu.

2 Double-click the form named rbMain.

3 Change the caption of the form to:

 Form-Based Report Server

4 Select the RBServer tab on the Component
Palette.

5 Add an rsServer component to the form.

6 Select the form.

7 Code the OnCreate event of the form as:

 rsServer1.Active := True;

8 Press F12, to display the form.

9 Delete the menu component from the form.

10 Use the Code Editor to remove all event han-
dlers associated with the menu (This should leave
no code in the main form at all, except the server
activation in the FormCreate method.)

11 Close the Form and the associated unit, saving
all changes.

Register the Reports On the Server
1 Select View | Project Manager from the Delphi
menu.

2 Double-click the form named
“rb001CustomerList.”

3 Scroll to the bottom of the unit, and add the fol-
lowing code:

uses
 rsReportCatalog;

initialization
 TrsReportCatalog.RegisterReport(‘Examples',

 ‘CustomerList',
 ‘ppReport1’,

 Tfrm001CustomerList);

4 Close the form, saving all changes.

5 Add a registration call to each of the remaining
forms:

rb002Biolife
rb003OrderList
rb004Sections
rb005CustomerOrderItem

Note: For reports which contain event handlers,
the uses clause will need to appear after the imple-
mentation keyword as opposed to directly before
the initialization keyword.

6 Compile the project to make sure all code is cor-
rect.

Make the Data Access Components
Thread-Safe
1 Select View | Project Manager from the Delphi
menu.

2 Double-click the form named
“rb001CustomerList.”

3 Select the BDE tab of the component palette.

4 Place a TDatabase component on the

form.

5 Set the AliasName to “DBDemos.”

31Building a Report Server Application for Reports on Forms
TUTORIALS
6 Select all dataset components on the form and
set the DatabaseName to “Database1.”

7 Place a TSession component on the form.

8 Set AutoSessionName to True.

9 Select the TDatabase and TSession components
and copy them to the clipboard.

10 Close the form saving all changes.

11 Open each of the following forms, and paste the
Database and Session components into them.

rb002Biolife
rb003OrderList
rb004Sections
rb005CustomerOrderItem

12 Select File | Close All from the Delphi menu,
saving all changes.

Run the Server Application
1 From the Windows desktop, launch a Windows
Explorer.

2 Locate the rbServer.exe in the directory you cre-
ated for this tutorial.

3 Double-click the EXE to launch the applica-
tion.

4 Minimize the application.

Create a Thin-Client Application
1 Select File | New | Application from the Delphi
menu.

2 Select File | Save Project As... from the Delphi
menu.

3 Name the form’s unit frmThinClient and save it
in the directory with the Server application.

4 Name the project rbThinClient and save it in the
same directory.

5 Select the RBServer tab of the Component
Palette.

6 Place a rsClientReport component on the

form.

7 Place a rsClientReportExplorer component

on the form.

8 Set the ClientReport property to
“ClientReport1.”

9 Code the OnCreate event of the form as:

 rsClientReportExplorer1.Execute;

10 Select File | Save All from the Delphi menu.

11 Run the application. You should see the Report
Explorer with all of the registered reports in the
“Examples” folder. You should be able to preview
the reports.

33Building a Report Server Application for Reports in Files
TUTORIALS
Building a Report Server Application for Reports in Files

Overview
This tutorial will show you how to:

• Configure File-based Reports for use in a Report
Server Application

• Preview Reports from a Thin-Client Application

• Create a Thread-Safe Data Access Configuration

• Use Delphi Event Handlers with Server-based
Reports

Copy Existing Report Application to a
 New Directory
1 From the Windows desktop, launch the Win-
dows Explorer.

2 Create the directory:

C:\My RB Tutorials\02. File-Based Report
Server

3 Copy all of the files in:

…RBuilder\Tutorials\Server Projects\02.
File-Based Report Application

 to the new directory.

4 Select File | Open Project from the Delphi
menu, locate the project in the new directory and
open it.

5 Select File | Save Project As... from the Delphi
menu and save the project under the name
“rbServer.”

6 Run the project. You should see a single menu
item named “Reports.” Under this menu there
should be five reports listed. You should be able to
preview any of these reports.

7 Close the application and return to the Delphi
IDE.

34 Building a Report Server Application for Reports in Files

TUTORIALS
Create a Thread-Safe Data Module
1 Select File | New | Data Module from the Delphi
menu.

2 Save the data module as dmMain.

3 Select View | Project Manager and open the
rbMain form.

4 Cut the Database component from the

form and paste it into the data module.

5 Select the BDE tab of the component palette.

6 Add a TSession component to the data

module.

7 Set the AutoSessionName property to True.

8 Press Ctrl-S to save all changes.

Register the File-Based Reports
1 Select the RBServer tab of the component
palette.

2 Add an rsReportTemplateVolume compo-

nent to the data module.

3 Set the FileDirectory property to:

C:\My RB Tutorials\02. File-Based Report
Server

4 Set the VolumeName to “Examples.”

5 Press Ctrl-S to save all changes.

Move the Report Event Handlers to
the Data Module
1 Use the Delphi Code Editor to access the unit
for the main form.

2 Locate the following event handlers in the class
declaration for the form:

{rb004Sections}
procedure ppEmpSalesGroupFooterBand1BeforePrint(Sender: TObject);
procedure ppLabelContinuedPrint(Sender: TObject);
procedure ppStockListDetailBeforePrint(Sender: TObject);
{rb005CustomerOrderItem}
procedure varItemTotalCalc(Sender: TObject; var Value: Variant);
procedure varOrderTotalCalc(Sender: TObject; var Value: Variant);
procedure ppDetailBand1BeforePrint(Sender: TObject);.

3 Select and cut these event handler declarations
into your clipboard.

4 Click the dmMain tab of the Code Editor and
paste the declarations into the published section of
the data module class declaration.

5 Click the rbMain tab of the Code Editor and
scroll down to the implementations of these meth-
ods. Select and cut the implementations into your
clipboard.

6 Click the dmMain tab of the Code Editor and
paste the code into the implemementation section
of the data module.

7 Scroll to the first method in the data module and
place the cursor directly in front of TfrmMain class
name.

8 Press Ctrl-R; the Replace Text dialog is dis-
played.

9 Enter “TDataModule1” into the Replace edit
box.

35Building a Report Server Application for Reports in Files
TUTORIALS
10 Click the “All” button.

11 Move the following supporting method from the
main form to the private section of the data
module:

function GetDataPipelineForName(aList: TList;
 const aComponentName: String
): TppDataPipeline;

12 Declare the following implementation uses in
the data module, so that the report event handlers
will compile:

uses
 Graphics,
 ppClass, ppCtrls, ppVar, ppBands, ppReport, daDataModule,
 daDBBDE;

13 Scroll to the top of the unit and add “ppDB” to
the interface uses clause.

14 Right-click over the dmMain tab of the Code
Editor and close the unit, saving all changes.

Convert the Application to a Server
1 Select View | Project Manager from the Delphi
menu.

2 Double-click rbMain to display the form.

3 Delete the Menu component.

4 Remove all event handlers associated with the
menu.

5 Delete the FReport and FPath private variables
and any code associated with them from the main
form. The unit should look like this:

6 Change the Caption of the form to:

 File-Based Report Server

7 Add an rsServer component to the form.

8 Code the OnCreate event of the form as:

 rsServer1.Active := True;

9 Run the application. It should compile and run
with no errors.

10 Shut-down the application.

11 Select File | Close All from the Delphi menu,
saving all changes.

Run the Server Application
1 From the Windows desktop, launch a Windows
Explorer.

2 Locate the rbServer.exe in the directory you cre-
ated for this tutorial.

3 Double-click the EXE to launch the app.

4 Minimize the app.

36 Building a Report Server Application for Reports in Files

TUTORIALS
Create a Thin-Client Application
1 Select File | New | Application from the Delphi
menu.

2 Select File | SaveProject As... from the Delphi
menu.

3 Name the form’s unit frmThinClient and save it
in the directory with the Server application.

4 Name the project rbThinClient and save it in the
same directory.

5 Select the RBServer tab of the Component
Palette

6 Place a rsClientReport component on the

form.

7 Place a rsClientReportExplorer component

on the form.

8 Set the ClientReport property to
“ClientReport1.”

9 Code the OnCreate event of the form as:

rsClientReportExplorer1.Execute;

10 Select File | Save All from the Delphi menu.

11 Run the application. You should see the Report
Explorer with all of the registered reports in the
“Examples” folder. You should be able to preview
the reports.

37Building a Report Server Application for Reports in a Database
TUTORIALS
Building a Report Server Application for Reports in a Database

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Databased Report Templates for use
in a Report Server Application

• Preview Reports from a Thin-Client Application

• Create a Thread-Safe Data Access Configuration

• Use Delphi Event Handlers with Server-Based
Reports

Copy Existing Report Application to a
New Directory
1 From the Windows desktop, launch the Win-
dows Explorer.

2 Create the directory:

C:\My RB Tutorials\03. Databased Report
Server

3 Copy all of the files in:

…RBuilder\Tutorials\Server Projects\03.
Databased Report Application

 to the new directory.

4 Select File | Open Project from the Delphi
menu, locate the project in the new directory and
open it.

5 Select File | Save Project As... from the Delphi
menu and save the project under the name
“rbServer.”

Update the Path of the Database
Component
1 Double-click the Database2 database compo-
nent. Locate the PATH setting at the top of the
Parameter overrides list. We need to update this
path with the new location of the reporting tables.

2 From the Windows desktop, launch the Win-
dows Explorer.

3 Navigate to the directory for the application:

C:\My RB Tutorials\03. Databased Report
Server

4 Copy the path from the Address box of the Win-
dows Explorer.

5 Return to the Delphi IDE and replace the data-
base path with the path in your clipboard.

6 Close the Database component window.

38 Building a Report Server Application for Reports in a Database

TUTORIALS
7 Select the Table1 component and set Active to
True. This tests the new database path setting.

8 Run the project. You should see a single menu
item named “Reports.” Under this menu there
should be five reports listed. You should be able to
preview any of these reports.

9 Close the application and return to the
Delphi IDE.

Create a Thread-Safe Data Module
1 Select File | New | Data Module from the Delphi
menu.

2 Save the data module as dmMain.

3 Select View | Project Manager and open the
rbMain form.

4 Select the two database components, the table,
datasource and data pipeline components.

5 Cut the selection and paste it into the data
module.

6 Select the BDE tab on the Delphi component
palette.

7 Place a TSession component in the data

module.

8 Set the AutoSessionName property of the Ses-
sion component to True.

9 Press Ctrl-S to save all changes.

Register the Databased Reports
1 Select the RBServer tab of the Component
Palette.

2 Add an rsReportTemplateVolume compo-

nent to the data module.

3 Expand the DatabaseSettings property and con-
figure:

DataPipeline ppDBPipeline1
BLOBField Template
NameField Name

4 Set Storage Type to stDatabase.

5 Set the VolumeName to “Examples.”

6 Press Ctrl-S to save all changes.

Move the Report Event Handlers to
the Data Module
1 Use the Code Editor to access the unit for the
main form.

2 Locate the following event handlers in the class
declaration for the form:

{rb004Sections}
procedure ppEmpSalesGroupFooterBand1BeforePrint(Sender: TObject);
procedure ppLabelContinuedPrint(Sender: TObject);
procedure ppStockListDetailBeforePrint(Sender: TObject);
{rb005CustomerOrderItem}
procedure varItemTotalCalc(Sender: TObject; var Value: Variant);
procedure varOrderTotalCalc(Sender: TObject; var Value: Variant);
procedure ppDetailBand1BeforePrint(Sender: TObject);

3 Select and cut these event handler declarations
into your clipboard.

4 Click the dmMain tab of the Code Editor and
paste the declarations into the published section of
the data module class declaration.

5 Click the rbMain tab of the Code Editor and
scroll down to the implementations of these meth-
ods. Select and cut the implementations into your
clipboard.

39Building a Report Server Application for Reports in a Database
TUTORIALS
6 Click the dmMain tab of the Code Editor and
paste the code into the implememntation section of
the data module.

7 Scroll to the first method in the datamodule and
place the cursor directly in front of TfrmMain class
name.

8 Press Ctrl-R; the Replace Text dialog is dis-
played.

9 Enter “TDataModule1” into the Replace edit
box.

10 Click the “All” button.

11 Move the following supporting method from the
main form to the private section of the data
module:

function GetDataPipelineForName(aList: TList;
 const aComponentName: String;
): TppDataPipeline;

12 Declare the following implementation uses in
the data module unit, so that the report event han-
dlers will compile:

 uses
 Graphics,
 ppClass, ppCtrls, ppVar, ppBands, ppReport, daDataModule
 daDBBDE;

13 Right-click over the dmMain tab of the Code
Editor and close the unit, saving all changes.

Convert the Application to a Server
1 Select View | Project Manager from the Delphi
menu.

2 Double-click rbMain to display the form.

3 Change the Caption of the form to:

Databased Report Server

4 Add an rsServer component to the form.

5 Replace the existing OnCreate event handler
with:

 rsServer1.Active := True;

6 Press F12 to display the form.

7 Delete the menu component from the form.

8 Use the Code Editor to remove all event han-
dlers associated for the menu .

9 Delete the FReport private variable and any
code associated with it from the main form.

This should leave no code in the main form at all,
except the server activation in the FormCreate
method.

10 Run the application. It should compile and run
with no errors.

11 Shut-down the application.

12 Select File | Close All from the Delphi menu,
saving all changes.

Run the Server Application
1 From the Windows desktop, launch a Windows
Explorer.

2 Locate the rbServer.exe in the directory you cre-
ated for this tutorial.

3 Double-click the EXE to launch the app.

4 Minimize the app.

40 Building a Report Server Application for Reports in a Database

TUTORIALS
Create a Thin-Client Application
1 Select File | New | Application from the Delphi
menu.

2 Select File | Save Project As... from the Delphi
menu.

3 Name the form’s unit frmThinClient and save it
in the directory with the Server application.

4 Name the project rbThinClient and save it in the
same directory.

5 Select the RBServer tab of the Delphi compo-
nent palette

6 Place a rsClientReport component on the

form.

7 Place a rsClientReportExplorer component

on the form.

8 Set the ClientReport property to “ClientReport.”

9 Code the OnCreate event of the form as:

rsClientReportExplorer1.Execute;

10 Select File | Save All from the Delphi menu.

11 Run the application. You should see the Report
Explorer with all of the registered reports in the
“Examples” folder. You should be able to preview
the reports.

41Building a Report Server Application for an Explorer Database
TUTORIALS
Building a Report Server Application for an Explorer Database

Overview
This tutorial will show you how to do the
following:

• Configure Explorer Reports for use in a Report
Server Application

• Preview Reports from a Thin-Client Application

• Create a Thread-Safe Data Access Configuration

• Use RAP Event Handlers with Server-Based
Reports.

Copy Existing Report Application to a
New Directory
1 From the Windows desktop, launch the Win-
dows Explorer.

2 Create the directory:

C:\My RB Tutorials\04. Explorer Database
Report Server

3 Copy all of the files in:

…RBuilder\Tutorials\Server Projects\04.
Explorer Database Report Application

 to the new directory.

1 Select File | Open Project from the Delphi
menu, locate the project in the new directory and
open it.

2 Select File | Save Project As... from the Delphi
menu and save the project under the name
“rbServer.”

3 Double-click the dbSupportingTables database
component. Locate the PATH setting at the top of
the “Parameter overrides” list. We need to update
this path with the new location of the reporting
tables.

4 From the Windows desktop, launch the Win-
dows Explorer.

5 Navigate to the directory for the application:

C:\My RB Tutorials\04. Explorer Database
Report Server

42 Building a Report Server Application for an Explorer Database

TUTORIALS
6 Copy the path from the Address box of the Win-
dows Explorer.

7 Return to the Delphi IDE and replace the data-
base path with the path in the clipboard.

8 Close the Database component window.

9 Select the “tblFolder” component and set Active
to True. This tests the new database path setting.

10 Run the project, and click the “Launch” button.
You should see the Report Explorer and be able to
preview any of the listed reports.

11 Close the application and return to the Delphi
IDE.

Create a Thread-Safe Data Module
1 Select File | New | Data Module from the Delphi
menu.

2 Save the Data Module as dmMain.

3 Select View | Project Manager and open the
rbMain form.

4 Select all of the components in the groups
labeled Folders, Items, and Databases.

5 Cut the selection and paste it into the data
module.

6 Select the BDE tab on the Delphi component
palette.

7 Place a TSession component in the data

module.

8 Set the AutoSessionName property to True.

9 Press Ctrl-S to save all changes.

Register the Databased Reports
1 Select the RBServer tab of the Delphi compo-
nent palette.

2 Add an rsReportExplorerVolume compo-

nent to the data module.

3 Set the FolderPipeline property to plFolder.

4 Expand the FolderFieldNames property and
make sure each field name is set as follows:

FolderId FolderId
Name Name
ParentId ParentId

43Building a Report Server Application for an Explorer Database
TUTORIALS
5 Set the ItemPipeline property to plItem data.

6 Expand the ItemFieldNames property and make
sure each field name is set as follows:

Deleted Deleted
FolderId FolderId
ItemId ItemId
ItemType ItemType
Name Name
Size Size
Template Template

7 Close the data module and the associated unit,
saving all changes.

Convert the Application to a Server
1 Select View | Project Manager from the Delphi
menu.

2 Double-click rbMain to display the form.

3 Change the Caption of the form to:

Explorer Database Report Server

4 Delete all of the components from the form. The
form should now be blank.

5 Select the RBServer tab of the Delphi compo-
nent palette.

6 Add a rsServer component to the form.

7 Code the OnCreate event handler of the form as:

 rsServer1.Active := True;

Delete the event handler for the “Launch” button.

8 Run the application. It should compile and run
with no errors.

9 Shut-down the application.

10 Select File | Close All from the Delphi menu,
saving all changes.

Run the Server Application
1 From the Windows desktop, launch a Windows
Explorer.

2 Locate the rbServer.exe in the directory you cre-
ated for this tutorial.

3 Double-click the EXE to launch the app.

4 Minimize the app.

Create a Thin-Client Application
1 Select File | New | Application from the Delphi
menu.

2 Select File | Save Project As... from the Delphi
menu.

3 Name the form’s unit frmThinClient and save it
in the directory with the Server application.

44 Building a Report Server Application for an Explorer Database

TUTORIALS
4 Name the project rbThinClient and save it in the
same directory.

5 Select the RBServer tab of the component
palette.

6 Place an rsClientReport component on the

form.

7 Place an rsClientReportExplorer compo-

nent on the form.

8 Set the ClientReport property to
“ClientReport1.”

9 Code the OnCreate event handler for the form
as:

rsClientReportExplorer1.Execute;

10 Select File | Save All from the Delphi menu.

11 Run the application. You should see the Report
Explorer with all of the registered reports in the
“Examples” folder. You should be able to preview
the reports.

45Building a Report Server Application for Report Archives
TUTORIALS
Building a Report Server Application for Report Archives

Overview
This tutorial will show you how to do the follow-
ing:

• Access Report Archives from a Report Server
Application

• Preview Reports from a Thin-Client Application

Copy Existing Report Application to a
New Directory
1 From the Windows desktop, launch the Win-
dows Explorer

2 Create the directory:

C:\My RB Tutorials\05. Archive Report
Server

3 Copy all of the files in:

…RBuilder\Tutorials\Server Projects\05.
Archive Report Application

 to the new directory.

4 Select File | Open Project from the Delphi
menu, locate the project in the new directory and
open it.

5 Select File | Save Project As... from the Delphi
menu and save the project under the name
“rbServer.”

6 Run the project. You should see a single menu
item named “Reports.” Under this menu there
should be five reports listed. You should be able to
preview any of these reports.

7 Close the application and return to the Delphi
IDE.

46 Building a Report Server Application for Report Archives

TUTORIALS
Register the Report Archives
1 Select File | New | Data Module from the Delphi
menu.

2 Save the data module as dmMain.

3 Select the RBServer tab on the Delphi compo-
nent palette.

4 Add an rsReportArchiveVolume compo-

nent to the data module.

5 Set the FileDirectory property to:

C:\My RB Tutorials\05. Archive Report
Server

6 Set the VolumeName property to “Examples.”

7 Close the data module and the associated unit,
saving all changes.

Convert the Application to a Server
1 Select View | Project Manager from the Delphi
menu.

2 Double-click rbMain to display the form.

3 Change the Caption of the form to:

Archive Report Server

4 Delete the Menu and Archive Reader compo-
nents from the form. The form should now be
blank.

5 Remove all of the event handlers associated
with the Menu from the form’s unit.

6 Select the RBServer tab of the Delphi compo-
nent palette.

7 Add an rsServer component to the form.

8 Code the OnCreate event of the form as:

 rsServer1.Active := True;

9 Run the application. It should compile and run
with no errors.

10 Shut-down the application.

11 Select File | Close All from the Delphi menu,
saving all changes.

Run the Server Application
1 From the Windows desktop, launch a Windows
Explorer.

2 Locate the rbServer.exe in the directory you cre-
ated for this tutorial.

3 Double-click the EXE to launch the app.

4 Minimize the app.

47Building a Report Server Application for Report Archives
TUTORIALS
Create a Thin-Client Application
1 Select File | New Application from the Delphi
menu.

2 Select File | Save Project As... from the Delphi
menu.

3 Name the form’s unit frmThinClient and save it
in the directory with the Server application.

4 Name the project rbThinClient and save it in the
same directory.

5 Select the RBServer tab of the Component
Palette

6 Place an rsClientReport component on the

form.

7 Place an rsClientReportExplorer compo-

nent on the form.

8 Set the ClientReport property to
“ClientReport1.”

9 Code the OnCreate event handler of the form as:

rsClientReportExplorer1.Execute;

10 Select File | Save All from the Delphi menu.

11 Run the application. You should see the Report
Explorer with all of the registered reports in the
“Examples” folder. You should be able to preview
the reports.

49Run a Report Server Application from a Windows Service
TUTORIALS
Run a Report Server Application from a Windows Service

Overview
This tutorial will show you how to do the follow-
ing:

• Install a Windows Service

• Use the RB Services Administrator to Designate
a Report Server Application

In previous tutorials we built a Report Server appli-
cation as a stand-alone EXE. While this is certainly
a valid way to run a report server, the Server Edi-
tion provides for a two-piece server architecture,
where a Windows Service hosts a report server
application. This scheme is more robust; if the
report server crashes, the Windows Service can
restart it. This tutorial will show you how to put
such an architecture in place.

Install the Windows Service
1 From the Windows Desktop, launch a Windows
Explorer.

2 Locate the RBWinService.exe in:

C:\Program Files\Boland\Delphi6-
\RBServer\Windows Service

3 Run this program and accept the default location
for the service application. Once the installation
process is complete, you should see the following
icon on your system tray:

4 Double-click this icon to display the RB Ser-
vices dialog:

This dialog shows that the service is up and run-
ning, and that a sample Report Server application
is being hosted from the given location.

5 Close the dialog.

50 Run a Report Server Application from a Windows Service

TUTORIALS
Create a Service Compatible Report
Server Application
1 From the Windows Desktop, launch a Windows
Explorer and create a new directory:

C:\My RB Tutorials\
06. Windows Service-Based Server

2 Copy the contents of:

…RBServer\Tutorials\Complete\01. Build a
Report Server Application\05. Reports in
Archives

 to the new directory.

3 Launch Delphi and open the rbServer project in
the new directory.

4 Access the unit for the rbMain form.

5 In the interface section add “rsServerActiveX”
to the uses clause.

6 Select Run | Parameters from the Delphi menu.

7 In the parameters edit box enter:

/regserver

8 Click OK to close the dialog.

9 Press F9 to run the project. If the COM server is
registered successfully, no message will be dis-
played.

Update the File Directory of the
Report Volume
1 Select View | Project Manager from the Delphi
menu.

2 Double-click dmMain to display the data
module.

3 Select the rsReportArchiveVolume1 compo-
nent.

4 Set the FileDirectory property to:

C:\My RB Tutorials\
06. Windows Service-Based Server

5 Select Project | Compile from the Delphi menu.

6 Select File | Close All from the Delphi menu,
saving all changes.

Designate the Report Server
Application from the Windows Service

1 Double-click the ReportBuilder Services
icon in the system tray.

2 Click the Stop button. The top part of the dialog
should change to light red, indicating the service is
stopped.

3 Click the Change button and designate the
rbServer application in:

C:\My RB Tutorials\06. Windows
Service-Based Server

4 Click the Start button. The top area of the dialog
should turn light green, indicating the server is
running.

5 Close the dialog.

Run the Thin-Client Application
1 Return to the Delphi IDE.

2 Select File | Open Project from the Delphi
Menu.

3 Locate rbThinClient.dpr in the directory for this
tutorial and open it.

51Run a Report Server Application from a Windows Service
TUTORIALS
4 Run the application. You should see the Report
Explorer with all of the registered reports in the
“Examples” folder. You should be able to preview
the reports.

53Publish Reports to the Web
TUTORIALS
Publish Reports to the Web

Overview
This tutorial will show you how to do the follow-
ing:

• Build a WebTier as an ISAPI DLL

• Configure a Virtual Directory on IIS

For this tutorial, you will need a machine with IIS
5 installed. You will also need a report server
application running. Therefore, completing the pre-
vious tutorial is recommended before beginning
this tutorial.

Note: This tutorial was created using IIS 5, how-
ever the steps for IIS 4 are similar. Depending on
your knowledge of IIS, you may be able to suc-
cessfully use this tutorial with IIS 4.

Create a Directory for the Web Tier
1 From the Windows Desktop launch the Win-
dows Explorer.

2 Create the following directory:

C:\My RB Tutorials\07. WebTier\Cache

3 Select the “Cache” directory.

4 Right-click and select Properties.

5 If you see the Securities tab, select this tab and
continue with steps 6-8. If you do not see the Secu-
rities tab, jump to the next section entitled “Create
a Virtual Director on IIS.”

6 Select IWAM_<MachineName> user.

7 Click the “Full Control”checkbox.

8 Close the dialog.

Note: The ISAPI DLL we are about to create
needs full read/write access to the Cache directory
in order to store and remove files as reports are
generated.

54 Publish Reports to the Web

TUTORIALS
Create a Virtual Directory on IIS
1 Access the Control Panel and double-click
Administrative Tools.

2 Double-click Internet Information Services.

3 Expand “local computer,” “Web Sites” and
locate the “Default Web Site” entry.

4 Right-click “Default Web Site” and select New |
Virtual Directory.

5 Click Next.

6 Enter “myWebTier” as the alias for the
directory.

7 Click Next.

8 Set the directory to:

C:\My RB Tutorials\07. WebTier

9 Click Next.

10 Check the box labeled “Execute (such as ISAPI
applications or CGI).”

11 Click Next.

12 Click Finish. A new virtual directory will be
created and selected.

13 Right-click over the new directory and select
Properties.

14 Locate the “Application Protection” drop-down
list at the bottom of the dialog.

15 Change the setting from “Medium (Pooled)” to
“High (Isolated)”

16 Click Apply.

17 Click OK to close the dialog.

18 Close the Internet Information Services and
Administrative Tools windows.

Create an ISAPI DLL
1 Launch Delphi.

2 Select File | New | Other… The following dia-
log will be displayed:

55Publish Reports to the Web
TUTORIALS
3 Scroll to the bottom row of icons and double-
click “Web Server Application.”

A dialog will be displayed requesting the type of
web application you want to create:

4 Click OK to accept the default. A new web
module will be created.

5 Select File | Save Project As... from the Delphi
menu.

6 Save the web module under the name
“wmMain.”

7 Save the project under the name “myWebTier.”

8 Select View | Project Manager from the Delphi
Menu.

9 Right-click myWebTier.dll and select View
Source.

10 Change “ISAPIThreadPool” to “rsISAP-
IThreadPool.” This will allow the ISAPI dll to uti-
lize a more optimized thread pool.

11 Select the RBServer tab on the Delphi compo-
nent palette.

12 Place an rsWebTier component in the web

module.

13 Configure as follows:

CacheDirectory C:\My RB Tutorials\
07.WebTier\Cache\

WebCachePath http://localhost/
myWebTier/Cache/

WebModuleURI http://localhost/
myWebTier/myWebTier.dll

Add a Default Action to the
WebModule
1 Right-click over the Web Module and select
“Action Editor.”

2 Add an Action to the list.

3 Use the Object Inspector to set the Default
property of the Action to True.

4 Select the Events tab of the Object Inspector.

5 Double-click the OnAction event and code the
following:

Response.Content := rsWebTier1.ProcessWebRequest(
Request.QueryFields,
Request.Content);

6 Compile the application. You should now see
myWebTier.dll in the project directory.

7 Launch Internet Explorer and enter the follow-
ing address:

http://localhost/myWebTier/myWebTier.dll

56 Publish Reports to the Web

TUTORIALS
8 Press enter. The Report Explorer is displayed:

9 Single click on a report to preview.

57Scaling the Web Tier with a Server Farm
TUTORIALS
Scaling the Web Tier with a Server Farm

Overview
This tutorial will show you how to do the follow-
ing:

• Use a ServerFarm to increase the number of
users which can be supported by a WebTier.

• Use “Round Robin” or “Minimum Load” load
balancers to assign servers to client sessions.

• Track which server has been assigned to a given
client session.

Prerequisites: This tutorial assumes you have com-
pleted at least one of the report server application
tutorials, the Windows service tutorial and the
“Publish Reports to the Web” tutorial.

Hardware needed: You will need access to at least
three machines: Two to be used as report servers
and one to be used as the web server/client testing
machine. On the first PC (which we will call the
Web Server), you’ll need , IIS 5 (or 4), Delphi and
ReportBuilder Server Edition installed. The two
report server machines need access to the same net-
work as the Web Server machine.

Create a Report Server Application
1 From the Web Server machine, launch Delphi
and select File | Open Project... from the main
menu.

2 Open the rbServer project in the following
directory:

C:\Program Files\Borland\Delphi6-
\RBServer\Tutorials\Complete-
\01. Build a Report Server Application-
\05. Reports in Archives

3 Compile the project.

4 Select File | Close All from the Delphi menu.

Copy the Report Server Application to
a Network Folder
1 From the Windows Desktop, launch a Windows
Explorer.

2 Locate the executable you just created in:

C:\Program Files\Borland\Delphi6-
\RBServer\Tutorials\Complete-
\01. Build a Report Server Application-
\05. Reports in Archives

3 Select the following files and copy them to your
clipboard:

rbServer.exe
rb001CustomerList.raf
rb002Biolife.raf
rb003OrderList.raf
rb004Sections.raf
rb005CustomerOrderItem.raf

58 Scaling the Web Tier with a Server Farm

TUTORIALS
4 Paste these files into a network folder which is
accessible from the two report server machines.

5 Copy RBWinService.exe and ReadMe.doc
from:

C:\Program Files\Borland\Delphi6-
\RBServer\Windows Service

To the same network folder in which you saved the
report server application files.

Deploy the Report Server Application
1 Move to the first report server machine. (You’ll
need to be at the keyboard for this computer.)

2 From the Windows Desktop launch a Windows
Explorer.

3 Create the directory:

C:\Report Server

4 Copy the following files from the network
folder into this directory:

rbServer.exe
rb001CustomerList.raf
rb002Biolife.raf
rb003OrderList.raf
rb004Sections.raf
rb005CustomerOrderItem.raf

5 Locate RBWinService.exe in the network
folder.

6 Run this program, accepting the default entries
(this will install the Windows service that hosts the
report server application.) After the installation is
complete, you should see a new icon on your Sys-
tem Tray:

7 Double-click this icon, to display the Report-
Builder Services dialog.

8 Click the Stop button to stop the sample server.

9 Click the Change button and select rbServer.exe
in C:\Report Server.

10 Click the Start button; the top section of the dia-
log should turn green after a second or two, indi-
cating that the server is running.

11 Close the dialog.

12 From the Windows Desktop select Start | Pro-
grams | Accessories | Command Prompt.

13 At the command prompt, type “ipconfig” and
press enter.

14 Write down the IP address of the machine.

15 Repeat steps 1-14 on the second report server
machine. You should now have two active report
server machines and the IP address of each.

Check Each Server via Thin Client
1 Return to the Web Server machine.

2 From Delphi, open the project in:

C:\Program Files\Borland\Delphi6-
\RBServer\Demos\Clients-
\01. Client Explorer

3 Select the “cbxAddress” combo box.

4 Use the Object Inspector to enter the two IP
addresses for the server machines in the Items
property.

5 Press Ctrl-S to save your changes.

6 Run the application.

7 Select the IP address for the first server and
click the “Explorer” button.

59Scaling the Web Tier with a Server Farm
TUTORIALS
8 You should see the main window for the
ClientReportExplorer:

9 Close this window and select the IP address for
the second server.

10 Click the “Explorer” button; you should see the
same ClientReportExplorer window. This confirms
that both report servers are up and running.

11 Close the application and return to Delphi.

Configure a Web Tier Using Round
Robin
1 From Delphi, open the myWebTier.dpr project
in:

C:\Program Files\Borland\Delphi6-
\RBServer\Tutorials\Complete-
\03. Publish Reports via a Web Server

2 Select View | Project Manager and double-click
“wmMain.”

3 Select the WebTier component.

4 Expand the ServerFarmSettings property in the
Object Inspector.

5 Launch the property editor for ServerAddresses.

6 Enter the IP address for each report server on a
separate line.

7 Close the String List Editor.

8 Check to make sure that the LoadBalancer prop-
erty is set to “Round Robin.”

9 Press Ctrl-S to save your changes.

10 Select Project | Build All Projects from the Del-
phi menu.

11 Use the Windows Explorer to copy myWebT-
ier.dll to the myWebTier virtual directory. (If you
do not understand this step, please complete the
“Publish Reports to the Web” tutorial before con-
tinuing.)

Note: If myWebTier.dll will not copy success-
fully, use Internet Information Services to unload
the existing DLL.

Test via Web Browser
1 From the Windows Desktop, launch an Internet
Explorer.

2 Enter the following address:

http://localhost/myWebTier/myWebTier.dll

You should see the ClientReportExplorer (only this
time as a JavaScript/HTML application.)

Note: It would be a good idea to add this link as
one of your “favorite” links, otherwise you will
end up entering it over and over again in the
remainder of this tutorial.

3 Preview a few of the reports.

4 Launch another Internet Explorer and preview
reports with it as well. When you run the second
browser, you’ll actually be running reports on the
second server. However, from the browser you
can’t really tell; it all looks the same. Let’s track
which server is generating the pages for a given
browser.

60 Scaling the Web Tier with a Server Farm

TUTORIALS
5 Return to Delphi and reopen the “myWebTier”
project.

6 Select the WebTier component and expand the
ServerFarmSettings property.

7 Set ColorizedPages to True.

8 Recompile and redeploy myWebTier.dll.

9 Launch two new web browsers and preview
reports in each. You should notice that the report
page color in the first web browser is light red and
the report page color in the second web browser is
light green. This verifies that the reports have been
generated by different servers.

Configure a Web Tier Using Minimum
Load
1 Return to Delphi and reopen the “myWebTier”
project.

2 Select View | Project Manager and double-click
“wmMain.”

3 Select the WebTier component and expand the
ServerFarmSettings property.

4 Set the LoadBalancer property to “Minimum
Load.”

5 Recompile and redeploy myWebTier.dll.

6 Launch a web browser and begin previewing a
report. The report page color should be light red.
Return to the Report Explorer and launch another
report in the same web browser. Continue pre-
viewing different reports for about sixty seconds.

7 Launch another web browser and preview a
report. If your activity on the first browser gener-
ated enough load, the report page color in this sec-
ond browser will be light green (indicating that the
second server was used to generate the pages.)

8 Experiment with creating load on a given server
and then launching a new web browser to see if the
other server is used. You should be able to get
browsers with reports generated by both servers.

	Server Fundamentals
	Report Application vs. Report Server Application
	Socket To Me
	Building a Report Server Application
	Talking To The Server From A Thin Client
	Registering Reports With The Server
	Spelunking With The Report Explorer
	Publishing Reports to the Web
	Making Web Browser Content Printable With PDF
	Troubleshooting the WebTier
	FAQ

	Tutorials
	Building a Report Server Application for Reports on Forms
	Building a Report Server Application for Reports in Files
	Building a Report Server Application for Reports in a Database
	Building a Report Server Application for an Explorer Database
	Building a Report Server Application for Report Archives
	Run a Report Server Application from a Windows Service
	Publish Reports to the Web
	Scaling the Web Tier with a Server Farm

