
Reprinted with permission by Informant Communications Group February 2003 | DELPHI INFORMANT MAGAZINE

N E W & U S E D

Moreover, if your existing reports were created using
“regular” ReportBuilder, converting them to a report server
is a snap. And even if you’ve been using another reporting
tool, the ease and power of ReportBuilder Server Edition
will make you want to change.

Multi-tier Reporting
First, let’s look at reporting in multi-
tier applications. If you’ve ever tried to
run a report from a DataSnap client,
you know what a problem it can be.
If the amount of data required to print
the report is small, the solution is easy.
Just load the data into a ClientDataSet
and use that as the data source for
the report. If the volume of data is
large, bringing the data to the client
may cause an unacceptable traffi c load
on the network, and/or unacceptable
memory consumption on the client.

Network traffi c can be a particular
problem if the DataSnap client and
server are communicating across a
low-speed WAN. (There’s another
solution, but it requires additional
custom code. You can print the report
to a fi le on the server. By adding
custom methods to the IAppServer

interface you can compress the fi le, send it to the client,
uncompress it and save the fi le to disk. Then the client
can print the fi le.)

Using ReportBuilder Server Edition you can easily write a
report server that lets client applications request a report.
When the server gets a request, it generates the pages
requested by the client, compresses the pages, and returns
them to the client across any TCP/IP network. The client
application decompresses the report, then lets the user pre-
view or print it just as if the report were being run locally.

To minimize network traffi c, the client automatically caches
the pages so they don’t have to be sent across the network
if they’re requested again. The server also maintains session

 Do you need an easy way to implement report-

ing in your multi-tier applications? Do you

need to publish reports on the Web? If your

answer is “Yes,” then ReportBuilder Server Edition 7.0

is the tool you’ve been looking for.

 ReportBuilder Server Edition 7
Multi-tier Reporting

 By Bill Todd

Figure 1: ReportBuilder’s report explorer.

fi

DELPHI INFORMANT MAGAZINE | DelphiZine.com

information for each client, so it knows which pages have
already been sent. The combination of data compression,
client-side caching, and persistent session information on
the server reduces network traffi c to the minimum possible.

Converting to the Server Edition
If you’ve been using ReportBuilder, your reports fall
into one of three categories. They’re compiled into
an application, stored as report templates in a fi le or
database, or stored in a report archive.

Compiled into an application. If you have an application
that includes one or more reports that are compiled into
the program, moving them to a report server requires just
a few simple steps. Start by creating a new application.
Then move the form that contains the report to the folder
that holds the new application and add the form’s unit
to the new application. If the data access components
that provide the data for the report are in a separate data
module instead of on the form, copy or move the data
module to the new application’s folder, and add its unit
to the application.

Drop an rsServer component from the RBServer page of
the Component palette onto the new application’s main
form. By default, the server and client communicate on
port 1333. Change the Port property if you need to use a
different port. Add an OnCreate event handler to the form
and add the following statement:

rsServer1.Active := True;

Setting Active to True causes the rsServer component to
begin listening for client connections.

Each report must be registered with the server. To register
a report, open its unit and add rsReportCatalog to the
uses clause in the implementation section. Next, add the
following call to the unit’s initialization section.

TrsReportCatalog.RegisterReport('Examples',
 'Customer List', 'ppReport1', Tfrm001CustomerList);

The fi rst parameter is the volume the report will be in.
Think of volumes as folders; they’re a way to group and
organize reports. The second parameter is the name
you want displayed for this report when you view the
registered reports using the rsClientReportExplorer. The
third parameter is the name of the TppReport component,
and the fourth is the class name of the form that contains
the TppReport.

The last step is critical. You must make sure that the
data access components used by the report are thread
safe. How you do this depends on which data access
components you’re using. For example, if you are using the
BDE (Borland Database Engine) you must use a Database
and a Session component, with the Session component’s
AutoSessionName property set to True. With the InterBase
Express components, you must use a remote connection.

Building a client application is even easier. Create
a new application, then add rsClientReport and
rsClientReportExplorer components to the main form. Set
the ClientReport property of the rsClientReportExplorer
to rsClientReport1. Add a button to the form and create
an OnClick event handler for the button that calls the
rsClientReportExplorer’s Execute method. Run the server,
run the client, click the button and you will see the Report
Explorer dialog box shown in Figure 1. You can select any
report from the report explorer, and preview or print it.

Stored in template fi les. If your ReportBuilder reports
are stored in template fi les, building a server application
is just as easy. The only difference is that you drop an
rsReportTemplateVolume component on the server’s main
form or data module, and set its FileDirectory property to
the folder that contains the templates. If the templates are
stored in a database table, set the StorageType property to
stDatabase. Next, expand the DatabaseSettings property
and set DataPipeline to the DataPipeline component that
supplies data from the template table, set BLOBField to the
fi eld that contains the template, and set NameField to the
fi eld that contains the name of the report.

Stored in a report archive. If you have reports in a
ReportBuilder archive, creating a server requires just
two steps. Add an rsReportArchiveVolume component to
the main form, and set its FileDirectory property to the
folder that contains the archive. Second, drop an rsServer
component on the main form, and create an OnCreate event
handler that sets its Active property to True.

Just the Facts
ReportBuilder Server Edition 7.0 makes it easy to implement
a complete multi-tier or Web-based reporting solution. The
combination of data compression, client-side caching, and
persistent session information on the server reduces net-
work traffi c to the minimum possible.

Digital Metaphors Corp.
11001 W. 120th Avenue, Suite 210
Broomfi eld, Colorado 80021

Phone: (303) 531-8032
Fax: (303) 531-8036
Web Site: http://www.digital-metaphors.com
Price: US$999 for ReportBuilder Enterprise Edition, one
development license, and one CPU deployment license.
US$249 per additional CPU.

N e w & U s e d | ReportBuilder Server Edition 7

Figure 2: The ReportBuilder Services dialog box.

Reprinted with permission by Informant Communications Group February 2003 | DELPHI INFORMANT MAGAZINE

An obvious problem with the servers described so far
is that they are Windows executables. That means that
someone has to log on to the machine where the server
will run and execute the server program. Having a user
logged on to a fi le, database, or Web server machine
creates a serious security hole. The solution is to write the
report server as a Windows service. Fortunately, you don’t
have to: ReportBuilder Server Edition includes a Windows
service, RBWinService.exe, that can automatically run a
report server application.

Using RBWinService.exe, like everything else in
ReportBuilder Server Edition, is remarkably easy.
First, run the EXE to install the service. Next, add the
rsServerActiveX unit to the uses clause in the interface
section of the server application’s main form. Next,
compile and run the report server with the /regserver
command-line switch. Double-click the ReportBuilder
service icon in the system tray to display the dialog
box shown in Figure 2. Click the Stop button to stop the
service; then click the Change button and select the server
application that you want to run. Finally, click the Start
button and close the dialog box. Now your server will run
automatically each time the host machine is started.

Reporting on the Web
Once you have a report server running, publishing your
reports on the Web is a matter of writing an ISAPI.DLL that
contains one component. Start by creating a new ISAPI
application using the Web Server Application wizard in the
Object Repository. Save the application. Create a virtual
directory in IIS that points to the directory that will contain
the ISAPI DLL. Create a folder under the folder that contains
the DLL to hold cached report pages.

Now drop an rsWebTier component on the application’s
Web module. Next, set the CacheDirectory property to
the folder that will hold cached report pages. Set the
WebCachePath property to the URL of the cache directory.
Set the WebModuleURI property to the URL of the folder
that holds the DLL. Compile the DLL, then call it from your
browser. You’ll see the report explorer shown in Figure 3.
ReportBuilder also supports ASP and Apache Web modules.

One problem with the browser-based
report explorer is that it looks too
good. My fi rst reaction was that it
must be an ActiveX control. Surpris-
ingly, that isn’t true; the report and the
explorer are created with XHTML and
JavaScript generated by the server.

When serving reports on the Web, you
may have a large number of users try-
ing to run reports at the same time.
ReportBuilder Server Edition handles
this through its support for report server
farms. The ServerFarmSettings property
of the rsWebTier component lets you
enter the IP addresses of the servers in
the farm, and choose either minimum-
load or round-robin load balancing.

To achieve accurate printing from a Web browser you can
add either of two third-party export components to your
Web tier project. After you add the export component a Print
button will appear in the report preview window in your
browser. When you print, the report is exported to Adobe
Acrobat PDF format.

Documentation
ReportBuilder has always had superb documentation;
ReportBuilder Server Edition continues this tradition. In
addition to online help and sample applications, you get a
66-page tutorial that takes you through building each type
of server application step by step. The tutorial starts by con-
verting an application with form based reports to a server
and takes you through template- and archive-based reports,
using the ReportBuilder Server Edition service and setting
up a report server farm.

Pricing and Conclusion
ReportBuilder Server Edition is priced at US$999. This
includes ReportBuilder Enterprise Edition, one develop-
ment license, and one deployment license. The deployment
license lets you deploy to a single CPU server. Additional
deployment licenses are available at US$249 per CPU.

The most impressive thing about ReportBuilder Server Edition
7.0 is how easy it is to use. All you need to do to implement
a complete multi-tier or Web-based reporting solution is add
a couple of components to a project, set a few properties, and
add one or two lines of code. The excellent tutorial makes get-
ting started a snap. Even confi guring report server farms is
easy. This well-designed, well-documented, easy-to-use prod-
uct will meet all of your reporting needs. It’s easy to see why
ReportBuilder has won Best Reporting Tool and Product of the
Year in the last four Delphi Informant Readers Choice Awards.

Bill Todd is president of The Database Group, Inc., a database consulting
and development fi rm based near Phoenix. He is co-author of four database
programming books, author of more than 100 articles, a contributing editor
to Delphi Informant Magazine, and a member of Team B, which provides
technical support on the Borland Internet newsgroups. Bill is an internationally
known trainer and is a frequent speaker at Borland Developer Conferences in
the United States and Europe. Readers may reach him at bill@dbginc.com.

Figure 3: The report explorer in a Web browser.

After slaving over hundreds of reports and spending
countless hours getting them just right, you realize that all
of this wonderful ‘content’ is trapped in a teeny tiny LAN.
You know it’s the modern day equivalent of the message
in a bottle, but after getting ample practice in the art
of ‘suffering fools’ at the latest meeting with your CEO,
who remains incredulous that these reports ‘aren’t in my
browser’, you realize that you better get the message out
of the bottle and quick. One problem: creating a report
server isn’t exactly a cakewalk.

Enter ReportBuilderTM Server Edition. Take those
reports, in whatever configuration they may currently
reside, register them with this report server, and it’s a
done deal. Use the WebTier component to quickly deploy
everything via your Web Server, or use the ReportServer
component to deliver reports across the LAN or across
the Web to a thin client. Either way you realize that you’ve
just found something that’s going to save your bacon.
You want to know who to thank but the guy at Digital
Metaphors just says ‘Don’t worry about it, it’s what we do.’

Are your reports like a message in a bottle?

For a live demo surf: www.digital-metaphors.com/server

ReportBuilder Server Edition. Get the message out of the bottle.

REPORT SERVER

• Serve report content over the web via a multi-threaded
NT service

• Provide a list of available reports in a folder tree
structure

• Send and receive search criteria for a given report

WEB TIER

• Publish reports as XHTML to web browser clients
• Build your own ISAPI, ASP, Apache or CGI web

applications
• Customize the generated XHTML and JavaScript

framework

CLIENT SUPPORT

• Web: Select available reports, enter search criteria
and preview report content via IE 4, IE 5, Netscape 4,
and Netscape 6

• Thin Client: Use the standard ReportBuilder UI to
access server-based reports from within a Delphi
application.

2002
READERS CHOICE

Product of the Year

2002
READERS CHOICE

Best Reporting Tool

New

ReportBuilder
SERVER EDITION

TM

